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TEIRD-ORDER COMBINED FUNCTION BENDING UAGNETS -- 

David C. Carey 
Fermi Nations1 hccelerrtor Laboratory 

Batavia, Illinois 60510 

A complete third-order description of a charged 
particle optics1 system must include a combined 
function bending magnet. The magnetic field can have 
dipole, quadrupale, sextupole, and octupole terms. 
Yidplane symmetry is assumed. Each additional order 
in the optical analysis requires inclusionFi;~tn 
additional multipole in tba field expansion. 
second-, and third-order expansions require 
quadrupole, sextupolc, and octupo1e terms 
respectively. Third-order matrix elements may be 
derived by an iterative Green's function solution of 
the differential equations of motion. Third-order 
transfer matrix elements arise not only from 
third-order term= in tha equations of motions, but 
also from the cascading effect of second-order terms. 
Solutions have bsen derived and have been incorporated 
into the computer programs TEANSPOBT and TUBTLE. 

Introduction 

Combined function bending magnet= have been a 
standard component of accelerators and beam lines 
since the beginning of high-energy physics. Early 
synchrotrons such 8s the Cosmotron or the Bevatron 
used weak focusing where the normalized field index n 
took a value between 0 and 1, but distinctly different 
from .5. The invention of strong focusing led to 
combined function bending magnets where the absolute 
ualue of D was much greater than 1. The magnets then 
alternsted in the sign of n, leading to more effective 
focusing and smaller apertures than wad the case for 
accelerators with weak focueing. The AGS at 
Brookhaven and the PS at CERN mere constructed 
according to this principle. 

Still higher energy accelerators at Fermilab and 
CERN led to separated function design. The bending 
magnets had uniform central field and the focusing *as 
done by a separate set of quadrupole magnets. These 
accelerators required such a large number of magnets 
that it was still a good approximation to consider 
bath bending and focusing functions to be distributed 
uniformly about the circumference of the ring. ln 
addition, the tune of the machine could now be 
controlled independently af the bending magnets. 

Still the combined function bending magnet 
remained a useful tool for accelerator builders. The 
larger accelerators required smaller sccelerators as 
boaster devices. The Fermilab booster uses combined 
function bending magnets. The SLAC linear collider 
requires that the bending functions be as distributed 
as possible to limit energy losses due to syochrotron 
radiation. Ths focusing function must then be 
incorporated into the bending magnets leading to 
combined-function bending magnets. 

The theory of charged-particle optics' was 
extended beyond the liney analysis in = paper by 
Brown, Belboach, and Bonin. Additional analgsls was 
performed in B SLAC summer study by Streib. The bet 
of second-order matrix elements for the transverse 

particle coordinates and their4 
derivatives ram calculated by Brom. 

longitudinrl 
Amow other 

things, a second-order analysis allorsd correction of 
the momentum dependent focusing of the be- by a 
curvature of the pole face of the bending magnet=. 
The longitudinal matrix elementsSrere later calculated 
by Brown, Serrranckx, and Carey. 

Ia this paper ve describe tha calculation of the 
third-order transfer matrix elementa of the central 
portion of a combined function bending magnet. The 
third-order representation of the fringing field will 

;p,'p In a separate paper in this conference by 
Let ua begin with a description of the 

configuration of the magnetic field and the equations 
of motioa. 

Bepresentation g * Yagnetic w 

The assumption here is that the field 
configuration possesses midplane symetry. 0y this re 
mean that the scalar potential from which the magnetic 
field is derived is ar, odd function of the vertical 
distance from the magnetic midplane. Transfer matrix 
elements hare been calculated to second order far 
cases of riolatioy of midplane symmetry and are 
described elsewhere. 

In the magnetic midplane a third-order expansion 
of the magnetic field is given by: 

Bx = 0 

By = Bo(l - nx + px3 + ,x3 + . ..) (1) 

Bs = 0 

Because of Yaxrell's equations, the midplane 
expansion of the magnetic field uniquely determines 
the field at all points off the magnetic midplaae 
also. No additional coefficients are required for the 
full representation. The simplest method of 
determining the complete form is to require the 
magnetic scalar poterkial to satisfy Laplace's 
equation. When this is dons, the complete form of the 
magnetic field is: 

Bx = B. 
[ 
- nhy + Zfizh2xy + 37b3x*y (2) 

- (7 + $7 + $)b3y3 
I 

By = B. 
I 
1 - nbx t $.x2 I ~(n-2~)b2y2 + 7h3x3 

- ~(5~+2&9+a)bSxyB 
I 

Es = 0 

Maxwell's equations continue to require the 
longitudinal component of the field to be zero since 
re are dealing with only the central portion of the 



field where there is no longitudinal dependence Of 
either of the tranereres components. 

Equations of Yotioe 

With no approximations or truncations by order, 
the equations of motion of a charged particle in a 
magnetic field are: 

X- - h(l+h) - 1;’ 

TJ 

x*x* l 9’7’ + (1+hx)(bx’+h’x) 

I 

= ; T’ J’B~ - (I+hx)B, 

i 1 
YS - + I',' + (1+bx)(h%'+h'x) 

3 

= 3 T’ 
P (lth%)Bx - X’B# 

All derivatives are with respect to distance e Let the components X. represent the six-rector x, 
along the reference trajectory. The charge of the x1, y, y', E, and 6. The previously undefined quantity 
particle in question is q. The momentum p is given in e represents the longitudinal separation between a 
terms of the rsferer~.e ~omer~tum p and the fractional 
momentum deviation 6 ae p = p (i+67. The quantity h is 

given partida and one folloring the reference 

the curvature of the rcfePence trajecton in the 
trajectory. We will not discuss this quantity any 
further, instead using the letter L as an index over 

magnetic field. It is the reciprocal of the radius of which summations can be made. The two differential 
curY?.tur.. In P. uniform magnetic field h is constant 
and therefore h' is sero. The letter T represents the 

equations (5) can now be schematically represented b9 
the generic equation 

distance slang a particular orbit. Its derivative T' 
then is the differential ratio of distance along a 
giren orbit to that elong the reference trajectory. 
The value of T' is given by 

T’2 = xJ + p + (1+& (4) 

q + k& = fDijxj + $$jkxjxk 

' 2ijkE'j'k'e (6) 

Prom the above equations and the third-order 
expansion of the magnetic field, we can derive the 
complete set of equations of motion expanded to third 
order. 

x' + (l-n)h'x = h6 + (Zo-I-p)h3x2 + (+)h3y2 

+ ;h(? - y'*) + (Z-n)h% - h6* 

+ (2,9+7-a)h4x3 + (37 + 3,O - +,)h4ryZ 

+ ;(4-3+w + $ih'xy" 

- nh'x'yy' + @2n+l)h3x26 + ;(n+9$5 

+ $x'*6 + ;,/6 

+ (Z-n)h%' + M3 (5) 

y" + nh'y = Z(p-n)h3xr + bx'y' + nh2y6 

+ (37+4P-n)h4x2y - +(ET+2P+-n)h*y3 

+ (n-Z)h%x'y - $hzx'2y - ;r,h2& 

+ 2(.-8)h3xy6 + bx'~'6 - nh'y6' 

Solutions 

The solution of the equations of motion are 
obtained by iteration. The first-order solutions far 
x, x' 
of 

, Y, and y' are substituted into the right eide 
equations (5). The inhomogeneoue non-linear 

equation is then solved by considering the right side 
to be e driving term, and axpraseiag the eolutione ,V 
Green's function integrals of the driving te*m*. The 
first iteration is complete to second order and also 
contains the single integrals of the third-order 
driving terms. * second iteration imolvea 
substituting this solution into the right .sides of 

equations (5). The second-order solution is 
unchanged. The third-order solution contains 
additional terms which aye the double Green's function 
integrals of products of the second-order driving 
terms. 

The solution to third order ma9 be represeated as 

Xi(l) = fRijXjW + pijkLxjwxk(o) 

+ jpijkeXj(0)Xkw”ew (7) 

The first-order matrix elements 8, the second-order 
terms T, and the third-order terms U are all functions 
of position along the beam line. The single 
fire&order term on the right side of equations (5) is 
the expression h6 which is the driving term for the 
first-order dispersion. The relus of 6 is not 
affected by iterbtion, so this term produces no 
higher-order effects. The second-order matrix 
elements T are given y single intagrrla of the 
driving terms E by: 

Tijk = j,(w) 113. 
rrm B . WnkWd~ lm ml (8) 

The third-order elements are given z.a double integrals 
of products of second-order driving terms plus single 
integrals of third-order driving terms. iiere re'aite 
the expression for the U matrix in tarme of the B end 
T matrices. There are no explicit double integrals in 
the below equation since the T mstrix is 1 
integral. The double integrals occur bec&e'~~ ; 
matrix elements are themselves placed inside a Green's 
function integral. 



uijke = +A )-$mnRmj (71TnaV)d~ w + 2(Zn-/+h6 
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Gx(t,+,(r) G.J7,")d+dr' 

i 

t 
+ G. (tJ,T) x E. 

0’ 
T (T&(T)dr mn um m,k 

Third-Order Matrix Elements 

Space considerations do not permit the inclusion 
of the complete set of expressions for the third-order 
mstrix elements for the transverse coordinates. There 
are 70 of them and the average expression has about 
twenty terms, most of which contain double integrals. 
It would also be next to impossible to transcribe the 
terms into this paper rithovt error. A complete 
prin+g would be of qpastfonabls utility since the 
y-&;pxO;+eme=$ =~~;Qp~ ~n~;~nwy~;f,e~;~yy 

evaluating the matrix elements would use ogle of these 
computer programs, rather than return to the original 
expression. As v~ sample, we include only one term. 
It is one of the most commonly encountered, being the 
second-order chromatic effect on the focusing of a 
system. The expression for U1266 follows: 

u 1288 = - 2(2n-P) Gx(t.ddx(W~ w 

Gx (t,C c,V) sx WX (OdT 

l (2-~)h4jG~(t,r)1G~(r,r')~~(T')p(r')dr' 

+ (2-n)2h4/G~(t,T)lG~(r,T.)t!v')dr' 

G;(r,r')s;(r')dv' 

The outer integrals are taken from 0 to t, the inner 
onea from 0 to 7. 
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